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Abstract

Objective—To develop a natural language processing (NLP) system to extract medications and 

contextual information that help understand drug changes. This project is part of the 2022 n2c2 

challenge.

Materials and methods—We developed NLP systems for medication mention extraction, 

event classification (indicating medication changes discussed or not), and context classification 

to classify medication changes context into 5 orthogonal dimensions related to drug changes. 

We explored 6 state-of-the-art pretrained transformer models for the three subtasks, including 

GatorTron, a large language model pretrained using >90 billion words of text (including >80 

billion words from >290 million clinical notes identified at the University of Florida Health). We 

evaluated our NLP systems using annotated data and evaluation scripts provided by the 2022 n2c2 

organizers.

Results—Our GatorTron models achieved the best F1-scores of 0.9828 for medication extraction 

(ranked 3rd), 0.9379 for event classification (ranked 2nd), and the best micro-average accuracy of 

0.9126 for context classification. GatorTron outperformed existing transformer models pretrained 

using smaller general English text and clinical text corpora, indicating the advantage of large 

language models.

Conclusion—This study demonstrated the advantage of using large transformer models for 

contextual medication information extraction from clinical narratives.
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INTRODUCTION

The exposure and changes of medications are critical information to study health outcomes 

and pharmaceutical outcomes. Much details of medication changes (e.g., start, stop) and 

the corresponding contextualized information (e.g., negation and temporality) are usually 

captured as free text in clinical narratives, which cannot be directly used in clinical studies 

that require structured data fields. [1] Therefore, studies that solely rely on structure EHR 

for medication records is jeopardized by the system error from computerized provider order 

entry (COPE) systems. [2] Previous studies have applied natural language processing (NLP) 

to extract medication names, attributes (e.g., dose, frequency), and potential adverse drug 

events (ADEs), yet it is still challenging to extract comprehensive contextualized medication 

information for medication changes from clinical narratives.

NLP is evolving fast in the clinical domain as the breakthrough of deep learning-

based machine learning algorithms and the power of large language models (LLMs) 

pretrained using large-scale electronic health records (EHRs). The 2022 National NLP 

Clinical Challenge (n2c2) organized an open challenge with shared tasks focusing on the 

extraction of medications and contextualized information including negation, temporality 

(e.g., past, present), certainty (e.g., hypothetical, conditional), and actor (e.g., patient, 

physician). The challenge consists of three subtasks: (1) medication extraction – extract 

medication mentions; (2) event classification – classify medication mentions into disposition 

(medication change discussed), no-disposition (no change discussed), or undetermined (need 

more information); and (3) context classification – classify the medication mentions of the 

‘disposition’ group into 5 dimensions including Action (e.g. start, stop), Negation (e.g. 

negated), Temporality (e.g. past, present), Certainty (e.g. hypothetical, conditional), and 

Actor (e.g. patient, physician). We explored 6 pretrained transformer models from the 

general English domain and clinical domain for the 3 subtasks and our NLP systems were 

ranked 3rd in subtask 1 and ranked 2nd in subtask 2.

BACKGROUND

Researchers have explored NLP methods for medication information extraction from 

clinical narratives using benchmark datasets contributed by a series of open challenges 

organized in the clinical NLP community. In 2009, the third i2b2 Workshop organized 

an open challenge focusing on the identification of medications, their dosages, routes 

of administration, frequencies, durations, and reasons for administration from discharge 

summaries. [3] The 2010 [4] and 2012 [5] i2b2 challenges also have shared tasks focusing 

on the extraction of medications as part of treatment concepts and further explored a few 

contextual information such as Temporality and Negation. Later, the 2018 NLP challenge [6] 

for detecting Medication and Adverse Drug Events from electronic health records (MADE 

1.0) and 2018 n2c2 challenge [7] focused on the detection of medication and medication-
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induced ADEs, both of which have subtasks for medication information extraction. These 

open challenges provided valuable benchmark datasets publicly available through data 

use agreements, which greatly advanced the development of NLP systems for medication 

information extraction. We have participated in these challenges and developed machine 

learning-based NLP systems among the top teams [6,8,9].

Various NLP approaches for medication information extraction, including dictionary-based, 

rule-based, and machine learning-based, have been developed. Early medication extraction 

systems are often rule-based systems that utilized dictionaries of medications. For example, 

seven out of the top ten teams in the 2009 i2b2 challenge submitted rule-based solutions. 

The top 10 teams achieved exact F1 scores ranging from 0.764 to 0.857. [4] Xu et al. 
developed MedEx [1,10], one of the most widely used medication information extraction 

systems for clinical narratives using semantic parsing based on a context-free grammar 

and a comprehensive lexicon generated from many resources such as the RXNorm. Later, 

more and more systems applied machine learning solutions such as conditional random 

fields (CRFs) [11] and Hidden Markov Model (HMM) [12]. With the breakthrough of 

deep learning, a family of machine learning models based on deep neural network (DNN) 

architectures, recent studies have explored various DNNs for medical information extraction. 

[13] For example, we have applied convolutional neural networks (CNNs) to extract 

medications from clinical notes in Chinese [14]; Wei et al. [15] and Jagannatha et al. 
[16] explored a recurrent neural network (RNN) implemented using bi-directional Long-

Short-Term-Memory (Bi-LSTM) for medication and ADE detection from clinical notes. 

In the 2018 n2c2 challenge on medications and ADEs, nine out of ten teams adopted the 

Bi-LSTM-CRF model. The best system achieved a lenient micro-averaged F1 score of 94.18 

while the median F1 score for all systems was 0.9052 [7].

Recently, deep learning models based on the transformer architecture have become state-

of-the-art solutions for many NLP tasks. [17] The original transformer was built in 

an encoder-decoder structure using the self-attention mechanism. Compared with CNNs, 

the transformer reduced the complexity of the model and enables the learning of 

relations between distant features. Transformer-based NLP models have achieved state-of-

the-art performance for almost all NLP tasks such as named entity recognition, relation 

extraction, natural language inference, and question answering. Bidirectional Encoder 

Representations from Transformers (BERT) [18] and RoBERTa [19] are two popular 

transformer architectures. Transformer-based deep learning models split the learning into 

pretraining - where LLMs are pretrained using large-scale unlabeled corpora, and fine-

tuning - where the pretrained LLMs are fine-tuned using a small set of data with human 

annotations. Thus, one pretrained LLM can be applied to solve many downstream NLP 

tasks. Previously we have developed transformer models for clinical concept extraction 

including medications. [20]

In this study, we developed transformer-based NLP models to extract medication mentions 

and contextualized information using the benchmark dataset provided by the 2022 n2c2 

challenge. We explored 4 pretrained transformer models from the biomedical domain and 

two new transformer models pretrained using UF Health clinical text, including GatorTron 

[21] – an LLM pretrained using >90 billion words of text, and GatorTronS [22] – an LLM 
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pretrained using >20 billion words of synthetic clinical text generated using a GPT-3 [23] 

based generative clinical language model - GatorTronGPT [24]. Our system was ranked 3rd 

in subtask 1 and 2nd in subtask 2 according to the official evaluation results.

METHODS

Dataset

The 2022 n2c2 challenge organizers developed a corpus of 500 de-identified clinical notes 

from the Partners Healthcare’s CMED (Contextualized Medication Event Dataset). [25] 

Annotators manually annotated medications, events, and 6 dimensions of contextualized 

medication information. The corpus was divided into a training set of 350 notes, a validation 

set of 50 notes and a test set of 100 notes. Table 1 provides detailed statistics for the training 

and test sets. (We combined the validation set with training for simplicity)

Preprocessing

We reused the preprocessing pipelines developed in our previous study [20] to perform 

tokenization, sentence boundary detection, and ‘BIO’ format transformation. As different 

transformer models applied different word segmentation algorithms, our preprocessing 

module dynamically applied word segmentation algorithms according to the transformer 

model and aligned the word-level ‘BIO’ tags to the subtoken-level ‘BIO’ tags. The detailed 

preprocessing algorithm can be accessed from our GitHub repository: https://github.com/

uf-hobi-informatics-lab/NLPreprocessing.

Medication extraction

We approached medication extraction as a named entity recognition (NER) task and 

applied transformer-based deep learning methods. We adopted the standard ‘BIO’ format to 

represent the medication concept. Then, transformer-based deep learning models were used 

to classify words into three categories of labels (B, I, or O). Using pretrained transformer 

models, we generated distributed representations and used a classification layer (a linear 

layer with softmax activation) to calculate a probability score for each ‘BIO’ category. The 

cross-entropy loss was used for optimization.

Event and context classification

We approached event and contextualized medication information as text classification 

tasks and developed transformer-based classifiers. Specifically, we identified sentences 

containing medications and applied pretrained transformer models to generate sentence-level 

representation (e.g., the [CLS] token in BERT) and concept-level representation (e.g., the 

[S] and [E] tokens in BERT). A maximum length of 256 tokens was used for the input 

sentences. Sentences containing more than 256 tokens were truncated. We concatenated 

the sentence-level representation and concept-level representation into a classification layer 

to calculate a probability for each of the two categories: disposition and non-disposition. 

The cross-entropy loss was used for fine-tuning. For context classification, we applied the 

same strategy to further classify medications of the ‘disposition’ group into 5 orthogonal 

dimensions: Action (start, stop), Negation (negated, not negated), Temporality (past, 
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present), Certainty (hypothetical, conditional), and Actor (patient, physician). We trained 

individual classifiers for each dimension and aggregated the results using a post-processing.

Transformer-based machine learning models

We explored 2 pretrained transformer models from the general English domain, including 

Roberta and ALBERT; and 4 pretrained transformers from the clinical domain, including 

Roberta_MIMIC, ALBERT_MIMIC, GatorTron, and GatorTronS. We did not include the 

original BERT model as both GatorTron and GatorTronS were implemented using the same 

BERT-based architecture and pretrained using a much larger corpus. [21] Our previous study 

shows that GatorTron outperformed other BERT-based transformers including BioBERT and 

ClinicalBERT for medication extraction. [20,21,26,27]

ALBERT and ALBERT_MIMIC—Lan et al. developed A Lite BERT (ALBERT) for 

self-supervised learning of language representations [28]. Compared with the original 

BERT model, ALBERT adopted factorized embedding parameterization and cross-layered 

parameter sharing with the self-supervised loss for sentence-order prediction. We adopted 

the ALBERT model implemented in the Huggingface with 128M parameters. [29]

RoBERTa and RoBERTa_MIMIC—RoBERTa is an optimized BERT model developed 

by Liu et al. [19]. RoBERTa introduced new strategies including dynamic masking, 

full sentence sampling, large mini-batches, large byte level encoding, and removed next 

sentence prediction loss. RoBERTa MIMIC utilized the same optimization of RoBERTa but 

trained over the MIMIC data set. We explored the RoBERTa model implemented in the 

Huggingface with 355M parameters. [30]

GatorTron and GatorTronS—GatorTron is a BERT-style LLM pretrained using >90 

billion words of text. [21] GatorTronS is also a BERT-style LLM pretrained using >20 

billion words of synthetic clinical text generated using a GPT-3 model, GatorTronGPT. [22] 

We used the version with 345 million parameters for both GatorTron and GatorTronS.

Training strategies

For medication extraction, we followed the standard NER training procedure to fine-tune 

transformer models to recognize mediations using the training and validation sets provided 

in this challenge. Specifically, we train models using the training set of 350 notes and 

monitoring the performance using the validation set of 50 notes. For each transformer 

model, the best model based on the validation performance was submitted. For event and 

context classification, we followed the similar procedure to fine-tune transformer models for 

classification using the training and validation sets. The best classification model based on 

the validation results were submitted.

The end-to-end system

We integrated the medication extraction, event classification, and the context classification 

into a unified pipeline for the end-to-end task. The best models based on the validation 

performance were selected for submission.
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Experiment and evaluation

We reused the pretrained models from the public GitHub repository for two transformer 

models from the general domain, including RoBERTa, and ALBERT. For the two clinical 

transformer models, we adopted the RoBERTa_MIMIC and ALBERT_MIMIC model 

developed by fine-tuning the general models using clinical text from the MIMIC III database 

with > 745 million words in our previous study [20]. GatorTron and GatorTronS models 

were developed by training from scratch using >90 billion words of text (including >82 

billion words of de-identified clinical text from UF Health) in our previous studies. [21] 

Following the evaluation metrics used in this challenge, the micro- and macro- averaged 

precision, recall, and F1-score were used to evaluate medication extraction; the micro-

averaged precision, recall and F1-score were used to evaluate the event classification and the 

contextual classification. All evaluation scores were calculated using the official evaluation 

script and the test data set provided in this challenge.

RESULTS

Table 2 shows performance of medication extraction for all 6 transformer models. GatorTron 

achieved the best micro-average F1-score of 0.9828 (ranked 3rd in this challenge), followed 

by RoBERTa_MIMIC (0.9801) and GatorTronS (0.9791). GatorTronS achieved the best 

Macro-average F1-score of 0.9672, followed by GatorTron (0.9659) and RoBERTa_MIMIC 

(0.9643). All clinical transformers outperformed the transformer models trained using 

general English text with large margins.

Table 3 compares the 6 transformer models for event classification using the test set. 

GatorTron achieved the best overall micro-average score of 0.9379 (ranked 2nd in this 

challenge) and the best F1 scores (0.8726, 0.9652, and 0.6967) for all three categories. Two 

new transformer models pretrained using a larger corpus (i.e., GatorTron and GatorTronS) 

outperformed 4 existing transformer models pretrained using a smaller corpus (RoBERTa, 

RoBERTa_MIMIC, ALBERT, ALBERT_MIMIC).

Table 4 compares the 6 transformers for context classification using the test set. GatorTron 

achieved the best overall accuracy of 0.9126, outperforming other transformer models. The 

end-to-end system applied the GatorTron model for all three subtasks consecutively and 

achieved an overall accuracy of 0.6178.

DISCUSSION AND CONCLUSION

Understanding the exposure and changes of medications are critical in assessing various 

health outcomes and pharmaceutical outcomes using EHRs. The 2022 n2c2 challenge was 

organized to examine state-of-the-art NLP systems to extract medication mentions and 

determine the contextual categories indicating drug changes. We participated in all three 

subtasks and developed transformer-based solutions using 6 pretrained transformer models. 

Our systems achieved the third-best performance (micro-average F1 score of 0.9828) for 

subtask 1 and achieved the second-best performance for subtask 2 (overall micro accuracy of 

0.9379). The experimental results show that our GatorTron models trained using >90 billion 

words of text outperformed existing pretrained language models for medication extraction 
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and event/context classification. Our NLP systems can be applied to help characterize 

mediation changes to better study health outcomes and pharmaceutical outcomes.

For medication extraction, our GatorTron model achieved the best F1-score of 0.9828, 

indicating the efficiency of transformer-based LLMs. Among the 6 transformer models, 

those pretrained using clinical text outperformed others pretrained using general English 

text (i.e., RoBERTa and ALBERT), which is consistent with previous studies reporting 

that domain-specific clinical transformers outperformed general transformer models on 

clinical concept extraction. [20] Among the clinical transformers, the GatorTron model 

trained using >90 billion words of text achieved the best scores outperforming other clinical 

transformers pretrained using a much smaller clinical corpus. GatorTron models improved 

the performance of medication extraction mainly on recall, indicating that LLMs captured 

new documenting patterns from a much larger corpus. This observation is consistent with 

our previous study that scaling up data size improved various clinical NLP tasks. [21] 

RoBERTa_MIMIC showed comparable results with less pretraining data, indicating that 

the benefit of LLMs to concept extraction and event classification is moderate, which is 

consistent with the observation reported in our previous study.[21]

For event classification, our GatorTron models also achieved the best micro-average 

accuracy (0.9379) among all categories. GatorTronS achieved performance comparable 

to GatorTron (0.35% difference). Compared with other model, GatorTron achieved 

better performance (e.g., 1.28% higher than RoBERTa). In this challenge, GatorTron 

ranked the third for event classification, which is 0.82% lower than the best performed 

model. Compared with medication extraction (a phrase-level NLP task), the performance 

improvements derived from GatorTron and GatorTronS are remarkably larger for event 

classification (a sentence-level task). Our finding suggests that larger transformer models 

benefit more for complex NLP tasks require long pieces of text. When looking into the 

scores of each category, we observed that all transformer models had remarkably lower 

scores for the ‘undetermined’ category. We examined the distribution of the ‘undetermined’ 

category and found that this category has a lower proportion in the test set than in the 

training set (train vs. test = 7.7% vs. 6.8%). Similar results were observed in context 

classification, where better performances were achieved for Actor and Negation, where there 

were similar distributions in the test set compared with the training set. This suggests that 

unbalanced data distribution is still a challenge. Our systems did not handle well instances 

with contradicting labels for one medication when the labels in the five dimensions of 

context are not mutually exclusive. For example, the start and stop events of the same 

medication may be discussed in different sections of a single clinical note. Future studies 

should explore solutions for these samples with contradicting labels.

Transformer-based NLP models achieved good performance for single subtask, yet the 

end-to-end system achieved a much lower performance (overall accuracy of 0.6178), 

indicating that extracting comprehensive contextual medication information with multiple 

dimensions is still a challenging task. Further studies should explore algorithms that could 

alleviate the unbalanced distribution of samples and improve the performance of extracting 

multi-dimensional contextual medication information to understand drug changes. The 

experimental results show that GatorTronS, an LLM trained using synthetic clinical text, 
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achieved performances comparable to GatorTron, an LLM trained using real-world clinical 

text, for medication extraction (0.9791 vs 0.9828), event classification (0.9362 vs 0.9379), 

and context classification (0.9080 vs 0.9126). Our findings support the potential utility of 

synthetic text generation from generative clinical LLMs such as GatorTronGPT to fill the 

gap in accessing large-scale clinical text and sharing clinical NLP models. Future studies 

should examine synthetic text generation of generative LLMs for other NLP applications.
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Table 1.

Summary of events

Task Categories Count in train 
(%)

Count in test 
(%)

Task Categories Count in train 
(%)

Count in test 
(%)

Event No Disposition 5260 (72.8%) 1326 (74.4%) Temporality Past 744 (52.7%) 173 (51.6%)

Disposition 1412 (19.5%) 335 (18.9%) Present 494 (35.0%) 132 (39.4%)

Undetermined 557 (7.7%) 122 (6.8%) Future 145 (10.3%) 29 (8.7%)

Action Start 568 (40.2%) 131 (39.1%) Unknown 29 (2.1%) 1 (0.3%)

Stop 340 (24.1%) 67 (20.0%) Certainty Certain 1176 (83.3%) 281 (83.9%)

Increase 129 (9.1%) 22 (6.6%) Hypothetical 134 (9.5%) 33 (9.9%)

Decrease 54 (3.8%) 13 (3.9%) Conditional 100 (7.1%) 15 (4.5%)

Unique Dose 285 (20.2%) 88 (26.3%) Unknown 2 (0.1%) 6 (1.8%)

Other Change 1 (0.1%) 0 (0.0%) Actor Physician 1278 (90.5%) 311 (92.8%)

Unknown 35 (2.5%) 14 (4.2%) Patient 106 (7.5%) 17 (5.1%)

Negation Negated 32 (2.3%) 6 (1.8%) Unknown 28 (2.0%) 7 (2.1%)

Not Negated 1380 (97.7%) 329 (98.2%) Medication 
extraction

Medication 7229 (100%) 1783 (100%)
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Table 2.

Performance of medication extraction on the test set.

Model Micro Macro

Precision Recall F1 Precision Recall F1

GatorTron 0.9772 0.9887 0.9828 0.9602 0.9717 0.9659

GatorTronS 0.9840 0.9743 0.9791 0.9720 0.9624 0.9672

RoBERTa 0.8746 0.8772 0.8759 0.8588 0.8614 0.8601

RoBERTa MIMIC 0.9832 0.9801 0.9816 0.9703 0.9584 0.9643

ALBERT 0.8472 0.8673 0.8571 0.8221 0.8416 0.8317

ALBERT MIMIC 0.9673 0.9653 0.9663 0.9355 0.9337 0.9346

Best Micro and Macro precision, recall, and F1-scores are highlighted in bold.
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Table 3.

Performance of event classification for the test set.

Model Overall (Micro) Disposition (Strict) No Disposition (Strict) Undetermined (Strict)

Pre Rec F1 Pre Rec F1 Pre Rec F1

GatorTron 0.9379 0.8782 0.8671 0.8726 0.9648 0.9655 0.9652 0.6911 0.7025 0.6967

GatorTronS 0.9362 0.8490 0.8232 0.8359 0.8893 0.9310 0.9097 0.7258 0.5172 0.6040

RoBERTa 0.8588 0.8111 0.7374 0.7725 0.8346 0.9255 0.8777 0.6600 0.3793 0.4818

RoBERTa MIMIC 0.9251 0.8323 0.8797 0.8554 0.9646 0.9609 0.9628 0.7383 0.6529 0.6930

ALBERT 0.8472 0.8111 0.7374 0.7725 0.8346 0.9255 0.8777 0.6600 0.3793 0.4818

ALBERT MIMIC 0.9179 0.8012 0.8797 0.8386 0.9666 0.9533 0.9599 0.7103 0.6281 0.6667

Best precision, recall, and F1-scores are highlighted in bold.
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Table 4.

Performance of context classification on the test set.

Model Accuracy

Overall Action Negation Temporal Certainty Actor

GatorTron 0.9126 0.8862 0.9790 0.8503 0.9102 0.9371

GatorTronS 0.9080 0.8503 0.9790 0.8683 0.9051 0.9371

RoBERTa 0.8417 0.7994 0.9740 0.7198 0.7994 0.9158

RoBERTa MIMIC 0.9121 0.8729 0.9740 0.8774 0.9096 0.9303

ALBERT 0.8196 0.6064 0.9740 0.8025 0.7994 0.9158

ALBERT MIMIC 0.9072 0.8453 0.9740 0.8882 0.8943 0.9342

Best accuracies are highlighted in bold.
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